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Abstract
First-principles thermodynamic calculations for metal iron (Fe) at ultrahigh
pressures and temperatures are reported. The calculated results can be divided
into three major parts: (i) the static 300 K equation of state and the dynamic
shock-wave Hugoniot at pressures up to 1000 GPa; (ii) the shock-reduced data
for the 300 K isotherm; and (iii) the thermodynamicproperties under the Earth’s
core conditions. The calculations are parameter free in the sense that the cold
part of the Helmholtz free energy is calculated using the full-potential linearized
augmented-plane-wave method within the generalized gradient approximation.
The thermal part due to the lattice ions is calculated using the recently
developed classical mean-field potential approach, and the thermal part due
to the thermal electrons is calculated using the one-dimensional numerical
integration technique. The calculated results agree well with the available
experimental data.

1. Introduction

In recent years, studies of iron (Fe) have received a lot of attention in the fields of high-pressure
physics and basic science—including static diamond-anvil-cell (DAC) experiments [1–6],
dynamic shock-wave experiments [7–14], laser-driven shock-wave experiments [15], and
ab initio simulations [16–23]. The main cause for this interest is Fe being the predominant
element of the Earth’s core [24]. In order to carry out an accurate hydrodynamic calculation
of the evolutionary and dynamic processes within the core, well-constrained thermodynamic
parameters of Fe under conditions of high temperatures and high pressures are crucial.

The present work reports systematic first-principles thermodynamic calculations on Fe
over a temperature range of 300–30 000 K and a pressure range of 0–1000 GPa using the
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recently developed classical mean-field potential (MFP) approach [25, 26] in conjunction with
the full-potential linearized augmented-plane-wave method (LAPW) [27]. The motivation
behind the present work is threefold:

(i) Experimentally, the physics of condensed matter at ultrahigh pressures can be investigated
in both static DAC experiments and dynamic shock-wave experiments. The low-
temperature DAC technique is suitable for the ordinary laboratory in which samples
can be studied under controlled environment conditions, and recent progress [3, 5] has
extended the pressure range for accurate lattice parameter determinations to over 300 GPa.
In contrast, shock-wave methods [9, 10, 12] can reach higher-temperature and higher-
pressure conditions, but the measurement of the temperature is difficult in comparison with
the DAC method. As a result of the tremendous technical advances in recent years, the two
techniques have been brought into close contact with each other, and it is highly desirable
to theoretically compare and evaluate the measurements made by the two techniques, as
well as to build a theoretical bridge between them.

(ii) As already mentioned, the thermodynamic parameters of the Earth’s core are of
considerable geophysical interest. The seismological data from the preliminary reference
Earth model (PREM) [24] suggest that the core, in the depth from 2891 to 6371 km,
is composed of mainly Fe and to some extent other, light elements. Therefore, a good
description of the Earth’s core is dependent, to first order, on the careful constraining of
the thermodynamic properties of Fe.

(iii) In a couple of papers [25, 26], we developed the MFP approach to calculate the various
kinds of thermodynamic quantity for a metal. With the well-known Dugdale and
MacDonald [28] expression for the Grüneisen constant explicitly deduced, the MFP has
been tested on the metal Ce, indicating that the well-known γ –α isostructural transition,
the experimental Hugoniot data, and the 300 K static equation of state (EOS) were well
reproduced [25]. The MFP approach has also been evaluated for five reference metals: Al,
Cu, Ta, Mo, and W, indicating that both the calculated Hugoniots and the 293 K isotherms
agree well with the experimental data [26]. These promising results have encouraged us
to study wide ranges of thermodynamic properties of Fe as a more serious test of the MFP
approach.

The rest of this work is organized as follows. In section 2 we briefly introduce the MFP
approach. The calculational details and 0 K results are summarized in section 3. Section 4
presents the calculated 300 K static EOS and the calculated Hugoniot states. Section 5 reports
our reduced shock-wave data. In section 6 we consider the thermodynamic parameters under
the Earth’s core conditions. Finally, section 7 contains our conclusions.

2. Thermodynamic model

It is customary to consider the Helmholtz free energy F(V , T ) per ion of a substance as
consisting of additive static, ionic, and thermal electronic excitation contributions [29], i.e. for
a given crystal structure at the given atomic volume V and temperature T we write

F(V , T ) = Ec(V ) + Fion(V , T ) + Fel(V , T ), (1)

where E(V ) is the 0 K total energy per ion, Fion(V , T ) is the vibrational free energy of the
lattice, and Fel(V , T ) includes the free energy due to thermal excitation of electrons from their
ground state and also contains the magnetic contribution.

Following the previous work [25, 26, 30], Fion is given by

Fion(V , T ) = −kB T

[
3

2
ln

mkB T

2π h̄2 + ln v f (V , T )

]
, (2)



Thermodynamic properties at the Earth’s core conditions 7323

where

v f (V , T ) = 4π

∫
exp

(
− g(r, V )

kB T

)
r2 dr. (3)

The MFP [25, 26] g(r, V ) has simply been constructed in terms of the 0 K total energy Ec(R)

as follows:

g(r, V ) = 1
2 [Ec(R + r) + Ec(R − r) − 2Ec(R)], (4)

where r represents the distance that the lattice ion deviates from its equilibrium position R and
where V is the atomic volume with respect to R.

One might doubt whether equation (4) will work for lower-symmetry systems such as hcp
Fe [31]. In fact, different choices of the coordinate system (such as the Wigner–Seitz radii
or the lattice constant) only introduce a structural constant into v f in equation (3), and this
also means a structural constant in the entropy. We note that this structural constant will be
automatically removed since almost all measurable thermodynamic quantities only involve
differentials of v f in some form.

From equation (2), the thermal energy due to the lattice ion is

Eion(V , T ) = kB T ξ(T, V ), (5)

with

ξ(V , T ) = 3

2
+

[
∂ ln v f (V , T )

∂ ln T

]
V

. (6)

Using this function ξ(T, V ), the specific heat due to the lattice ion at constant volume is then
given by

Cion
V (V , T ) = kB

{
ξ(V , T ) + T

[
∂ξ(V , T )

∂T

]
V

}
. (7)

When the magnetic contribution and the electron–phonon interactions are neglected, the
electronic contribution to the free energy is given by Fel = Eel −T Sel , where the bare electronic
entropy Sel takes the form [17, 32]

Sel(V , T ) = −kB

∫
n[ f ln f + (1 − f ) ln(1 − f )] dε, (8)

and where n is the electronic density of states (DOS) and f is the Fermi distribution function.
With respect to equation (8), the energy Eel due to thermal excitations of electrons from their
ground state can be expressed as [33]

Eel(V , T ) =
∫

n f ε dε −
∫ εF

nε dε, (9)

where εF is the Fermi energy.
Through equations (5) and (9), the total internal energy can be expressed by

E(V , T ) = Eion(V , T ) + Eel(V , T ) (10)

and the total constant-volume heat capacity is given by

CV (V , T ) = Cion
V (V , T ) +

[
∂ Eel(V , T )

∂T V

]
. (11)
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Figure 1. The calculated 0 K total energies and spin magnetic moments per atom as a function of
the Wigner–Seitz radius for bcc Fe (dot–dashed curve) and hcp Fe (solid curve).

3. Calculational details and 0 K results

In order to calculate the 0 K total energies, we employ the self-consistent, relativistic
(neglecting spin–orbit coupling), full-potential, and spin-polarized LAPW method [27] within
the generalized gradient approximation [34]. The basis sets include the semicore 3s and 3p,and
the valence 3d, 4s, and 4p partial waves. For the sake of numerical continuity of the calculated
energy versus volume relations, we use constant muffin-tin radii (Rmt ) of 1.75 au for both
the bcc (assuming ferromagnetic) structure and the ideal hcp (assuming antiferromagnetic)
structure. The plane-wave cut-off Kcut is determined by Rmt Kcut = 9.0. 4096 k-points in the
full zone are used for reciprocal-space integrations. The calculations are performed for atomic
volumes ranging from 100% expansion down to where the muffin-tin spheres touch. The ideal
c/a ratio 1.633 is used.

All the thermodynamic parameters are calculated by means of one-dimensional numerical
integrations or derivatives. The LAPW calculated 0 K total-energy points are directly taken
as input. Outside the range of the LAPW calculation, the cold total energy is obtained by
extrapolation using the Morse function.

The 0 K results for the usual bcc and hcp phases have already been discussed elsewhere,
including those [16–18] obtained using the LAPW method, those [19] obtained using the
LMTO (linear muffin-tin orbital) method, and those [20] obtained using the PAW (projector
augmented-wave) method. Our calculated 0 K total energies and spin magnetic moments per
atom as functions of the Wigner–Seitz radius for bcc Fe and hcp Fe are depicted in figure 1.
In fact, our 0 K properties are very similar to those from the previous calculations done by
colleagues. Since the present interest is focused on the finite-temperature case, we will not
discuss the 0 K results further in this work.

4. Equation of state

4.1. The bcc–hcp phase transition pressure

Under compression, Fe undergoes a phase transition [35] from the bcc structure to the hcp
structure. In general, this transition is centred at 13.0 GPa, is very sluggish, and has a large
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Figure 2. (a) The EOS of the Fe 300 K isotherm. Dot–dashed curve: calculation with the bcc
crystal; solid curve: calculation with the hcp crystal; plus signs: DAC data of Huang et al [1];
diamonds: DAC data of Jephcoat et al [2]; open circles: DAC data of Mao et al [3]. (b) The
Hugoniot. Dot–dashed curve: calculation with the bcc crystal; solid curve: calculation with the
hcp crystal; plus signs: from Barker and Hollenbach [7]; open circles: from Brown et al [11]; filled
triangles: from Anderson and Ahrens [12]; dotted curve: the calculated 300 K static EOS.

hysteresis. In comparison, our 300 K transition pressure is 14.2 GPa, calculated by equating
the Gibbs free energies of the two phases.

4.2. 300 K EOS

The calculated 300 K static EOSs for bcc and hcp Fe are compared with some typical
experimental data [1–3] in figure 2(a). For the lower-pressure bcc phase, our calculated
results are uniformly lower than the experimental data by ∼2%, which is exactly the same
as the deviation between the calculated 300 K equilibrium atomic volume of 11.56 Å3 and the
experimental one [3] of 11.78 Å3 (7.093 cm3 mol−1). For the higher-pressure hcp phase, at
pressures greater than 70 GPa the comparison between the calculation and the experiment is
very similar to the lower-pressure bcc case in the sense that the calculated curve is uniformly
lower than the experimental data by a constant value.

The poorest case is that for the lower-pressure region of the hcp phase. When the pressure
decreases from 70 GPa, the disagreement between the calculation and the experiment gradually
becomes larger. This is a common situation in previous first-principles calculations [16, 19, 20]
for Fe. However, since the major interest of the present work is in the higher-compression
region, this discrepancy can be circumvented.
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4.3. Hugoniot locus

The shock-wave technique [8] is one of the major experimental tools used to explore the various
kinds of thermodynamic parameters at ultrahigh pressures. The derived Hugoniot states are
characterized by using measurements of the shock velocity (D) and particle velocity (u) with
VH /V0 = (D − u)/D and PH = ρ0 Du where PH is the pressure and ρ0 is the initial density.
Through the Rankine–Hugoniot relations, these data define a compression curve (volume (VH )

versus pressure (PH )) as a function of known Hugoniot energy (EH ):

1
2 PH (V0 − VH ) = EH − E0, (12)

where V0 and E0 refer to the atomic volume and energy at ambient conditions respectively.
Using the calculated V0 and E0 of the bcc structure and numerically solving equation (12),

our calculated curves of Hugoniot pressure against volume for bcc and hcp iron are compared
with the experimental data [7, 11, 12] in figure 2(b). One can immediately see that the
comparisons between the calculations and the experiments are almost a direct copy of the
static case. We also plot the calculated 300 K EOS in figure 2(b) using a dotted curve, as an
guide to the eye, to demonstrate the large thermal contribution in the Hugoniot with respect to
the static 300 K case. Note that, at 1000 GPa, the thermal pressure in the Hugoniot is almost
equal to the cold pressure.

Among the very extensive studies on the thermal properties of Fe using the tight-binding
total-energy (TBTE) classical cell model, that of Wasserman et al [17] also calculated the Fe
Hugoniot up to 400 GPa for the hcp phase. The agreement between our MFP result and theirs
is very good, while the MFP method considerably simplifies the calculation and can easily be
employed even beyond 1000 GPa.

4.4. Heat capacities along the Hugoniot

The constraint of the heat capacities is significant due to the need for measuring the temperatures
along the Hugoniot. Our calculated heat capacities along the principal Hugoniot with the hcp
structure are presented in figure 3. Since all the thermodynamic quantities reported in this work
are calculated by the one-dimensional numerical technique, our calculated heat capacities
should be, to date, the most accurate ones in the ab initio regime. Note that the thermal
electronic contribution to the heat capacity has become non-negligible even at a pressure of
100 GPa; in the region from 160 to 340 GPa, within which Yoo et al [13] had measured
the Hugoniot temperatures, our calculated constant-volume heat capacity increased from ∼35
to ∼43 J mol−1 K−1.

4.5. Temperature along the Hugoniot

Our predicted temperatures along the principal Hugoniot of Fe in the hcp structure are shown
in figure 4 together with the measured data [13, 14]. Note that at the highest pressure of
1000 GPa, the calculated Hugoniot temperature reaches ∼30 000 K. The predicted shock-
wave temperatures derived from the thermodynamic calculations by Brown and McQueen [9]
are also shown for comparison. The agreement between our calculations, those of Brown
and McQueen, and the recent experimental data of Ahrens et al [14] are excellent. The
deviations between our calculation and the experimental results of Yoo et al [13] (notice the
huge difficulties in the experiment) might due to the constant-volume specific heat of 3kB

(24.9 J mol−1) for high-temperature Fe used by Yoo et al being somewhat small (see figure 3
for the heat capacity).
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Figure 4. The calculated temperature along the principal Hugoniot of hcp Fe. The solid curve
represents the present calculation, the open circles the measured data of Yoo et al [13], the solid
circles the recent measurements by Ahrens et al [14], and the plus signs the thermodynamic analysis
of Brown and McQueen [9].

At the shock-wave melting point at 243 GPa, the temperature recently measured by Ahrens
et al [14] is 5800 K. Our calculated temperature is 5739 K, which is exactly the same value
as Laio et al [22] calculated using the molecular dynamics (MD) method, is in excellent
agreement with the MD calculation by Belonoshko et al [23], and falls well within the range
of 5700 ± 500 K suggested by Ross et al [36].

4.6. Isentropic bulk modulus along the principal Hugoniot

In figure 5 we show our calculated isentropic bulk moduli BS(=BT CP/CV ) along the principal
Hugoniot of hcp Fe together with the measured data (=ρC2, where ρ is the density and C is
the sound velocity) for liquid Fe given by Brown and McQueen [9]. Again, our calculated
results are very good in comparison with experiment.



7328 Y Wang et al

0

1

2

3

0 200 400 600 800 1000

Is
en

tr
op

ic
 b

ul
k 

m
od

ul
us

 (
T

Pa
)

P (GPa)

Fe

Figure 5. The calculated (solid curve) isentropic bulk moduli along the principal Hugoniot for hcp
Fe together with the measured values (open circles) of Brown and McQueen [9].

5. Shock-wave data reduction

In analysing and interpreting both DAC and shock-wave EOS experiments, an important
distinction needs to be made between relative and absolute measurements. In the static DAC
experiments, only volume is measured from the x-ray line positions whereas the pressure is
indirectly inferred from the diffraction line shifts of a pressure marker or reference material,
which is mixed with the sample and whose P–V curve is well known. In the dynamic shock-
wave experiments, the P–V curve can be deduced directly from the measured data. In fact,
almost all the EOS standards used for the DAC measurements are directly or indirectly derived
from the reduction of the shock-wave data.

Also, traditionally, the reduction of shock data to isothermal or isentropic states requires
specific heat and Grüneisen parameter (γ ) values that are not well known. In the absence
of experimental constraints, researchers often make plausible speculations [9, 37], such as
γ /V = constant. Although in the framework of the present MFP approach, both parameters
become computable, we have found a very simple scheme which makes no use of these two
parameters for the reduction of the shock-wave data.

The great similarity in the comparison between calculations and experiments between
the 300 K EOS and the Hugoniot is a demonstration of the accuracy of the MFP approach
in calculating the thermal contribution. Therefore, we simply subtract the thermal volume
expansion of the Hugoniot relative to the static 300 K one, calculated by the MFP approach,
from the quadratic fitting [10, 12] to the shock-wave data.

5.1. Relative thermal contribution of the Hugoniot to the 300 K case

We first examine the accuracy of the MFP approach in calculating the thermal part in the EOS.
The calculated relative thermal contributions of the Hugoniot to the 300 K case are shown in
figure 6. Using the fittings to the static and dynamic experimental data, respectively, of Mao
et al (using the Birch–Murnaghan EOS) [3] and Hixson and Fritz (using a quadratic fitting
of the D–u relation) [10], we can derive experimentally based data, and these data are also
plotted in figure 6. We find a surprisingly good agreement between the calculation and the
experiment—especially so if we consider the errors due to the fittings in both the D–u relation
and the DAC data.
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Figure 6. The relative thermal contribution of the Hugoniot to the static 300 K case. Solid curves:
the present calculation; plus signs: data deduced by subtracting the 300 K data of Mao et al (see
[3]; Birch–Murnaghan EOS) from the Hugoniot data of Hixson and Fritz (see [10]; quadratic fitting
of the D–u relation); circles: data deduced by subtracting the 300 K data of Mao et al [3] from the
Hugoniot data of Brown and McQueen (see [9]; quadratic fitting of the D–u relation). (a) Thermal
volume expansion of the Hugoniot relative to the 300 K case. (b) Thermal pressure of the Hugoniot
relative to the 300 K case.

5.2. Reduced 300 K static EOS

In order to obtain a high accuracy in the reduction of the measured data, we must use an
analytical expression for the shock-wave data. Accordingly, we use the quadratic fitted result
of Hixson and Fritz [10] for u � 5.2 km s−1 and the quadratic fitted result of Anderson and
Ahrens [12] for u � 5.2 km s−1.

The numerical results of our reduction are compared with the measured data as well as the
fitting using the Birch–Murnaghan EOS and the universal EOS by Mao et al [38] in figure 7(a).
At pressures less than 300 GPa, our data are almost indistinguishable from those of Mao et al.
For pressures greater than 300 GPa, our data gradually become softer than the fittings by
Mao et al.

For convenience, our reduced data have also been fitted with both the original universal
EOS of Vinet et al [38] and the generalized universal EOS of Moriarty [39]:

Prd
300(X) = 3B0[(1 − X1/3)/X2/3] exp[η(1 − X1/3) + β(1 − X1/3)2

+ ξ(1 − X1/3)3 + δ(1 − X1/3)4], (13)

where X = V/V02 with V02 = 11.18 Å3 (6.73 cm3 mol−1 from Mao et al [3]), η, β, ξ , and δ

are fitting parameters, and B0 represents the equilibrium isothermal bulk modulus. In the case
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Figure 7. The 300 K static EOS for hcp Fe. (a) Comparison with the experimental data. Solid
curve: numerical results from the present reduction; open circles: DAC data of Mao et al [3]; dot–
dashed curve: Birch–Murnaghan EOS fitting of Mao et al; dashed curve: universal EOS fitting
of Mao et al. (b) Our fittings to the present reduced data. Dashed curve: the universal EOS [38]
fitting; dot–dashed curve (overlapping with the solid curve): the generalized universal EOS [39]
fitting; dotted curve: the shock-wave data used.

Table 1. The EOS parameters in equation (13) for the present shock-reduced 300 K isotherm of
hcp Fe.

EOS B0 η β ξ δ

Vinet 165.75 6.8717 0 0 0
Moriarty 207.27 0 71.069 −294.20 414.83

where β, ξ , and δ are all equal to zero, equation (13) reduces to the original universal EOS
with η = 3

2 (B ′
0 − 1), where B ′

0 represents the pressure derivative of B0.
The fitted results for B0, η, β, ξ , and δ are listed in table 1. Figure 7(b) shows the plots

of the comparisons between the different fittings and the numerical results. The generalized
universal EOS can give a better expression for the numerical data than the original universal
EOS. We also plot in figure 7(b) the shock-wave data used for the reduction, by means of a
dotted curve as a guide for the eye, to demonstrate the thermal contribution in the Hugoniot
curve with respect to the static 300 K curve.
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the present calculation for 5000 K; open circles: deduced by subtracting the 300 K data of Mao
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of Mao et al (see [3]; Birch–Murnaghan EOS) from the extrapolated 7000 K data of Dubrovinsky.

6. Thermodynamic properties relevant to the Earth’s core

The thermodynamic properties of Fe under the conditions of the Earth’s core pressure
ranges [24] of from 135.7 to 363.9 GPa are undoubtedly of utmost importance for the
understanding of the behaviour of the core, typically including the convective dynamics and
heat transport.

At present, the direct calculation of some thermodynamic parameters, such as the density,
is still not sufficiently advanced to reach the desired accuracy. On one hand, an accuracy of
1% in the lattice constant produced by the first-principles calculation could be thought to be
excellent; however, it will result in an error of 3% in the density. On the other hand, the Earth’s
core is not constituted of pure iron. In view of this, it is better to start from a study of relative
quantities.

6.1. Densities at 5000 and 7000 K relative to that at 300 K

As the first step, we check our procedure by calculating the density differences at high
temperatures relative to those at 300 K. In a very recent letter, Dubrovinsky et al [5] have
measured the Fe EOS at pressures and temperatures up to 300 GPa and 1300 K. Using these
data, they have also extrapolated a 5000 isotherm and a 7000 K isotherm. Using these two
isotherms and the 300 K data of Mao et al [3], we can deduce two sets of relative densities.
Accordingly, we can also derive two sets of equivalent quantities by the MFP approach. These
results are compared with each other in figure 8.

Our calculated differences between the 5000 and 7000 K density decrease with increasing
pressure (the density difference at 364 GPa is only half that at 136 GPa, whereas the result
obtained by Dubrovinsky et al is almost unchanged). Nevertheless, we can assume that the
agreement is good between these data, considering the error bars of the different model EOS
fittings to the experimental data and the 5000 and 7000 K data of Dubrovinsky et al being
extrapolations.
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Figure 9. The calculated temperature profile for hcp Fe under the Earth’s core conditions (solid
curve). The dotted curve represents the calculated high-pressure melting curve of pure hcp Fe [40].

6.2. Temperature profile of the core

In a previous paper [40], we briefly reported the calculated melting temperature of 6635 K for
Fe at the outer–inner-core boundary pressure of 328.9 GPa. This melting temperature is, in
fact, exactly the same as that derived by the MD method [22].

Having examined the ability of the MFP approach to reproduce the density differences
and having derived the melting temperature at the outer–inner-core boundary, we can turn to
calculating the temperature profile of the core.

Taking the density, at 328.9 GPa, of the PREM data as the reference point, we can
deduce a set of density differences from the PREM data. Subsequently, by reproducing these
data theoretically (at a given pressure, changing the temperature, calculating the density, and
comparing with the density calculated at 328.9 GPa and 6635 K), we can then derive a set of
temperatures under the conditions of the Earth’s core. The results are depicted in figure 9.
Specifically, at the core–mantle boundary pressure of 135.7 GPa, our calculated temperature
is ∼4980 K, and at the core centre, our calculated temperature is ∼6850 K.

6.3. Specific heat under the Earth’s core conditions

For reference we have also calculated the specific heat with respect to our calculated
temperature profile of the Earth’s core, and the results are shown in figure 10. Notice that the
calculated constant-volume heat capacities are almost constant, with a value of 40 J mol−1 K−1.
This is considerably greater than the value of 24.9 J mol−1 K−1(3kB) obtained by the Dulong–
Petit approximation. This large difference is mainly due to the large contribution from the
thermal excitation of the electrons.

6.4. Grüneisen parameter under the Earth’s core conditions

The thermodynamic Grüneisen parameter γth can be calculated from

γth(V , T ) = V BT (V , T )βP (V , T )

CV (V , T )
, (14)
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Figure 10. The calculated heat capacities for hcp Fe under the Earth’s core conditions. For the
key of the curves, see figure 3.
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Figure 11. The thermodynamic Grüneisen parameter for hcp Fe. Solid curve: the present
calculation; open circles: from Dubrovinsky [5]; plus signs: from Merkel et al [4]; solid circles:
from Anderson and Ahrens [12]; dashed curve: values calculated by Wasserman et al [17].

where BT is the isothermal bulk modulus and βP the volume thermal expansion coefficient.
In figure 11 we plot our calculated γth at the Earth’s core conditions together with the
very recent experimentally based values of Merkel et al [4] from Raman spectroscopy
[γ = 1.68(V/V02)

0.7], of Dubrovinsky et al [5] from the DAC [γ = 1.78(V/V02)
0.69], and of

Anderson and Ahrens [12] from shock-wave studies. We find that our calculated results are
very much comparable with these experimentally based data. Since the TBTE classical cell
model of Wasserman et al [17] and the present MFP approach share the same source, namely
the well-known free-volume theory [30], we also plot the calculated results (as the dashed
curve) of Wasserman et al in figure 11 for comparison.
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Figure 12. Bulk moduli of hcp Fe. Dotted curve: the first-principles 300 K isothermal values;
dot–dashed curve: the deduced 300 K isothermal values from our shock-reduced isotherm; solid
curve: the calculated isentropic values under the core conditions obtained by the MFP approach;
dashed curve: the isentropic value under the core conditions corrected by considering the shift of
our MFP calculation relative to our shock-wave reduction; open circles: the recently measured
room temperature values of Mao et al [6]; plus signs: the PREM data [24].

6.5. Bulk moduli under the Earth’s core pressure

Finally, we depict our calculated bulk moduli in figure 12. Four sets of theoretical values
are shown, i.e. set A: the first-principles 300 K isothermal values; set B: the deduced 300 K
isothermal values from our shock-reduced isotherm; set C: the calculated isentropic values
under the core conditions obtained by the MFP approach; and set D: the version of set C
corrected by considering the shift of our MFP calculation relative to our shock-wave reduction.
Note that the data of set B are just uniformly smaller, by ∼20 GPa (note the value of the bulk
moduli being ∼1000 GPa), than the recently measured values of Mao et al [6], and the data
of set D exactly constitute the upper bound of the PREM data.

7. Conclusion

We have performed an ab initio thermodynamic calculation for iron. We presented the
calculated 300 K static EOS at pressures up to 1000 GPa and the calculated Hugoniot state
at pressures and temperatures up to 1000 GPa and 30 000 K, studied the shock-wave data
reduction, and reported the calculated thermodynamic properties under the conditions of the
Earth’s core. The present work is unique in that all the thermodynamic quantities are derived
from only 0 K data derived from the accurate LAPW calculation. The present calculation is
parameter free in that we do not use the Debye temperature, nor the Grüneisen parameter. In
an application to iron, the present study demonstrates again the higher accuracy and greater
applicability of the MFP approach [25, 26].
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